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Abstract—The two-dimensional problem of curvilinear cracks lying along the interface between
dissimilar materials under remote heat flux is considered. Based on the Hilbert formulation and a
special technique of analytical continuation, closed form solutions for the stress functions in both
the inclusion and the surrounding matrix have been obtained in this study. It is shown that
singularities of the thermal stresses possess the same tri-log character as those obtained for isothermal
problems which would not be affected by the discontinuous jumps of the thermal properties across
the interface. For illustrating the use of the present approach, detailed results are given for a single
circular-arc crack in bi-material plate under uniform remote heat flux. Both the stress functions and
stress intensity factors are expressed in an explicit form and the latter are verified by comparison
with the existing ones. Numerical examples for commonly used fiber-reinforced composites such as
boron/epoxy, carbon/epoxy and glass/epoxy systems associated with an interface circular-arc crack
are examined and detailed results are provided. The validity of the fully open crack assumption is
also discussed.

1. INTRODUCTION

In view of the widespread use of high-temperature composite materials in advanced engin-
eering structures, the damage tolerance and reliability of composite material and structures
have become matters of concern. There arose the problem of finding thermal stress dis-
tribution in bonded dissimilar materials containing imperfections in the form of interface
cracks. The steady-state thermoelastic problems of interface cracks between dissimilar
isotropic media have been studied by Erdogan (1965), Barber and Comninou (1982, 1983),
Martin-Moran et al. (1983), Sumi and Ueda (1990). As to the cracks between anisotropic
media, solutions were given by Clements (1983), Hwu (1992), Ting et al. (1992) and Chao
and Chang (1993). Although the thermoelastic problems of interface crack have been
studied extensively over the past 30 years, very few published analytical studies are available
for the corresponding problems associated with curvilinear cracks. Based on the properties
of Plemelj formula and Cauchy integrals, closed form solutions for curvilinear cracks in
bonded dissimilar materials under inplane load and bending have been given by Perlman
and Sih (1967a, b). They found that the stresses near the tips of a curved crack possess the
same trig-log character of singularity as those obtained for a straight crack between dis-
similar materials. Recently, Chao and Shen (1993a) solved the thermoelastic problem of
curvilinear cracks in isotropic medium by application of the complex variable theory dealing
with sectionally holomorphic functions. It was found that the thermal stresses near the tips
of a curved crack possess the same character of singularity as those for a straight crack.

In the present study, we aim to provide the general solution to the thermoelastic
problem of curvilinear cracks in bonded dissimilar materials. Based upon the Hilbert
problem formulation and a special technique of analytical continuation, the stress functions
pertaining to each material medium are obtained in closed form. Details of the solution are
given for a single circular-arc crack in a bi-material plate under remote heat flux. Both the
stress functions and stress intensity factors are expressed in an explicit form. 1t should be
noted that the thermoelastic field presented here may become invalid for certain com-
binations of the angle of heat flux and central angle subtended by the circular-arc crack.
The presence of a closed form expression of the displacements enables us to find the critical
crack angle for which the crack faces come into contact with one another. Three typical
examples of composite materials are considered in the following work to illustrate the use
of the present approach.
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2. STATEMENT OF THE PROBLEM

Consider two homogeneous, isotropic elastic materials. Let one occupy the region S,
interior to the unit circle, r = 1, while the other occupies the infinite region S, exterior to
the unit circle (Fig. 1). The thermoelastic properties of the material in S* can be specified
by the constants u,, o, k), x, and those of the material S~ by p,, a5, k,, k, where p,, a;
and k; are the shear modulus, thermal expansion coefficient, and heat conductivity, respec-
tively and ;= (3—v;)/(1+v,) for generalized plane stress and «x, = (3—4v;) for plane
strain, v; being the Poisson’s ratio (j = 1, 2). If the bond between the two materials on the
unit circle is imperfect, it can be represented as the sum of L and L* where
L=L+L,+ - +L, the union of » circular-arc cracks a,,b,,, m=1,2, ..., n.

and :

L* = L¥+ L*+ - -- + L¥ the union of n circular-arc bond b,,4,,. |,

m=12,...,n and a,, , =a,.

Let the center of the unit circle be placed at the origin of the complex plane, z = x+iy
and t = exp (i) be those points of z on |z| = 1. For this problem, the tractions a,, 7., will
be specified on L while the continuity of the stresses and displacements are required on L*,
ie.

(6/),+i(c) =p"(t), onlL, (H
(6:7)2+1i(t)2 =p (1), onl, 2
and
(0.)+i(t9)1 = (0,)2+i(1)2, onL* 3
Uy +iv, = uy+iv,, onL*. @)

The superscripts + and — in eqn (1)-(2) are used to denote the boundary values of the
stresses as they are approached from S* and S, respectively, and the quantities p* (¢),
p~(¢) are the prescribed tractions on the crack surfaces. The polar components of the stress
tensor and displacement vector in the two-dimensional theory of isotropic thermoelasticity
can be expressed in terms of the complex functions ®;(z) and W¥,(z). Extending the
Bogdanoft (1954) stress combinations to the regions S* and S, it follows that :
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Fig. 1. An infinite medium partially bonded to a circular insert.
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(0,);+ (gg); = 2[®j(2)+m], (5)

(O'r)j + i("-'ro)j = d)j(z) + (Dj(z) - Z(D}(Z) - <§> ¥,(2), ©6)

and, the displacements may be combined to give:
2y +iv) = 16,6,(2) — 28D — (2 + 21,8,9,(2), (7)
with
1, forzeS *}

J= 2, forzeS~

¢'(2) =), ¥'(2)=Y(), g,(a= jqﬁo,(Z) dz, B;=(1+v)a;,

d’O(Z) = T(x,y) +iW(x,y),

where the overbar denotes the conjugate of the complex function, T(x, y) stands for the
temperature and W(x, y) the harmonic conjugate of the temperature.
For problems involving arcs of discontinuities, it is convenient to further introduce the

functions:
(N 1 1\ 1 (1) |

Making use of eqns (6) and (8), (1)—(4) can now be expressed in terms of ®,(z), Q,(z)

as:
O (D+Q (1) =p™(1), onlL, &)
; (1)+Q3(t)=p (1), onlL, (10)

and
@,(1)+Q,(t) = D(1) +Q,(¢), onL* (11)

1 1
'u—][xlq)l(t)_ﬂl(t)'i'zﬂlﬁlg/l ] = i (2@, (2) —Q,(2) +2u2B295(1)], on L*.
(12)
It should be pointed out that eqn (12) requires only the derivative :

Ou, Ov, Ou, .0Ov,

o6 '3 "o T'op

to be continuous across L* instead of the displacements u;, v; themselves as indicated in
eqn (4). Thus, eqn (12) will satisfy eqn (4) to within an additive constant. Hence, a complete
solution to the bi-material crack problem has been reduced to the evaluation of four
complex functions ®,(z), Q;(z), (j = 1, 2), which must satisfy the conditions as given by
eqns (9)—(12).
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3. PROPERTIES OF THE COMPLEX FUNCTIONS

A knowledge of the behavior of the complex functions for small and large values of
|z| is pertinent to the solutions of the dissimilar media problem.
First of all, since ®,(z) and ¥ ,(z) are holomorphic in S* they must take the forms:

®,(z) = Ag+ A z+A,2%+ - forlz] < 1, (13)
W, (z) = Bo+B,z+Byz2+ -+ for|z| < 1. (14)

From eqns (8), (13) and (14), Q,(z) is found to be holomorphic in S~. Therefore :

E, E
m@=&+§+ﬁ_.mm>L (15)

where
E,=A4, E, =0. (16)

In the region S~, ®,(z) and ¥, (z) are holomorphic including the point at infinity, i.e.
a
@@=%+§+%+m for |z| > 1, 17)

b, b
¥2@) = bot +2+- for |z| > 1. (18)

Substituting eqns (17) and (18) into (8) yields:
5 b,
Q@) =—-—5—— +€(z) for |z| < 1, (19)

which is holomorphic in §* with the exception of the point z = 0 and £(z) is a polynomial
in positive powers of z.

Without going into details, the constants a, and b, which appeared in eqns (17)
and (18), respectively can be found immediately by following the procedure described in
Muskhelishivili (1953) for the case of one material. If 67 and o5 denote the values of the
principal stresses at infinity and o the angle made by the direction of ¢{° with the x-axis,
then:

2U,8*
= + T 20
ay = 4(0'1 0'2)+11_+_ Xy (20)
by = —3(oF7 —0%)e ™ (21

where £® is the rotation at infinity.

In order to reduce the boundary problem to the solution of linear relationship or
Hilbert problem, we must extend all complex functions ®;(z), Q;(z) into the whole region.
Starting from the assumptions that the stresses and displacements are continuous over the
bonded segments of the circle |z] = 1, eqns (11) and (12) may be regarded as the conditions
of analytic continuation of ®,(z), Q;(z) from S* to $~ across L*. Now, ®,(z), Q,(¢) in
eqns (11) and (12) may be solved explicitly in terms of @,(¢) and Q,(¢), and the resulting
expressions are valid everywhere in the z-plane as:
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B Rl ALY PRl
,(2) PN Dy(z )+#2(1+ )Qz( )+ [ﬁzgz(z) B191(2)], (22)
i 12 1 271 2 i ’
Q) = 2B 0,0+ L0, - T i - Bl @)

Substituting eqns (13) and (19) into (22), the definition of the function ®,(z) can be
extended into a region S* by allowing poles up to the second-order at z = 0. This gives:

D,(2) = + L +n(z) for|z] <1, (24)

where 7(z) is a function holomorphic everywhere in the region $*, and

leub'o’ T, = “_”_LEI

+R 25
Hat Ky Myt ks I (25)

Note that the constant R, in eqn (25) may be found from the temperature functions
which possess simple poles at z = 0 (Chao and Shen, 1993b). Similarly, substituting eqns
(15) and (17) into (23), the function Q,(z) can also be extended into the region |z| > 1 as:

Q:(2) = Ryz+{(2), (26)

where {(z) is a holomorphic function everywhere in S~ and R, can be determined from the
temperature functions which possess simple poles at infinity (Chao and Shen, 1993b).

4. HILBERT FORMULATION

Inserting eqns (22) and (23) into the boundary conditions eqns (9) and (10) and solving
them simultaneously yields:

[@:() +Q2(0)] " +a[@2(5) +Q()] ™ = f(2), (27)
[@(2) — a2y ()] —[@2(2) —xQ,(2)] ™ = g(t), (28)
where :

_Ha(l+ky) m(l+ry) _ + +
f(t)_————uﬁm'czp N+—]= e, ? P~ () +AB(giT (1) —gi™ (1)) —B2(g:" (1) ~g5~ ()],
(29)

H2(1+x,) D . . .
9(t) =———=[p (1) —p~ (1 +A[B\(g* (1) —gi~ (1)) — B2(g5* (1) —g:~ (1))] (30)
Mot K,
_ 20,
Btk

and they must satisfy the Holder condition on L. The parameter « stands for :

=ﬂ1+l‘2’¢1
oKy
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Knowing that eqn (28) is a Plemelj equation for the function ®,(z) —xQ,(z), and using
the property from eqn (26), we have:

1 t f t
mz(z)—am(z)=§iﬁgdr+eo+e.z+j+zi. 31)

Furthermore, the nonhomogeneous Hilbert eqn (27) gives:

X(2) J J@)

D, D,
©2+ () = | iy o HEG) [Pn+1(z)+z+72], (32)

where the Plemelj function:
X@ =1 (z—a,) " (z—b,)""** m=12,...,n (33)

and the polynomial P, (z) is of degree not greater than n+1, i.e.
P2 =cotcrz+ +e, 2 e 2t (34)

The exponent f§ which appeared in eqn (33) is:
f=o1
C2n o8

which is referred to as a bi-elastic constant. It is realized that the singularities of the thermal
stresses are the same as those for the isothermal problem which would not be affected by
the discontinuous jumps of the thermal properties across the interface.

By means of eqns (22), (23), (31) and (32) the general solution involving the four
unknown functions ®,(z), Q;(z), (j =1, 2) may be arranged into a compact form as
follows :

(o) [ M+ )P (@) + (T +K0)Fo(2)] | 2, () —B.d (2
o T+ x ) (1+K,) + po(1+ 1)) + 1+x, [B292(2) — B1971(2)],

D,(2)

35)

(V) (g + ok ) F1(2) — (1K) (ua + 11 K2) F(2)
a p2(1+x) [ (1 +K2) + pa(1+x1)]

Qi(2)

2,
T B@-pgi@L (G6)

and

(oK )F1(2) + (2 + 11 K5) Fo(2)

0(2) = pi(1+r2) +pp(1+xy) 7

(U2 + p 1) [Fy(2) — Fp(2)]

38
(1 4m00) F () (38)

Q,(2) =

>

where
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X(z) £(0) D,
F,(2) = i J;X*U)(t— )dt+X(z)[ ,,+1(z)+—+ ] (39)
Fy(2) = i J. tg( )dt+eo+e1z+ + (40)

The quantities ¢, and 7, in eqn (31) may be associated with the coefficients of the series
given by eqns (19) and (24) as:

t =T1+a50, t2=T2+a5]. (41)

Using eqns (17) and (26), the constants e, and ¢, , appearing in eqns (31) and (32),
respectively can be expressed as:

€, = —aRz, (42)

R,

Cpyy = W (43)

The problem is now reduced to the determination of n+ 5 unknown constants eq, b,
D,, D,, ¢,, (im = 0, n) appearing in eqns (39) and (40) which must be solved by the addi-
tional n+ 5 equations to determine the remaining unknown constants uniquely. Using the
behavior of the stress function ®,(z) +Q,(z) near the point |z| = 0 in conjunction with
eqns (19) and (24), there follows:

X <Dl D_zz) _ le—zb'o N T2;51‘ 4

z

This gives two equations for solving the unknown constants D, and D, in terms of b,.
In addition, the constants ey, ¢, and ¢,_, can also be expressed in terms of b, by applying
the behavior of the stress functions @,(z), Q,(z), for large values of |z| in conjunction with
eqn (16). Now, the rest of the » unknown constants b, ¢y, ¢y, ..., ¢,_; are to be found
from the conditions that the displacements must be single-valued. Applying eqns (7) and
(8), such a requirement is equivalent to:

L[J K,CI)T(t)dt—J. Q7 (t)dt}—l[f rcch;(t)dt—J Qf(t)dt}
Hi L, u L, L,
+2ﬁf () di— 2[3;] g5 (M)de=0, m=1,2,...,n. (45)

For the purpose of computation in subsequent work, eqns (22) and (23) may be used
to put eqn (45) in the form:

j {1 (2 + 116 )[@F (1) — @7 (D] + (11 + p221)[QF (1) — Q5 (1)]

‘m

T2l 2937 () —g; (D) +Bi(gi" () —gi” ()} de =0, m=1,2,....,n. (46)

This gives a system of » linear equations solving for the » unknown coefficients b,, ¢,
¢y, ..., Co_z. Now, we have completed the general solution to the given thermoelastic
problem once the singular integrals with kernels of Cauchy type as indicated in eqns (31)
and (32) are evaluated. Note that the thermoelastic field presented above may become
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invalid for certain combinations of the angle of heat flux and the central angle subtended
by the circular-arc crack. The condition of fully open crack displacement must be addressed
to validate the given results.

5. SINGLE CIRCULAR-ARC CRACK

For illustrating the use of the present approach, we now consider the problem of an
infinite plate with a circular-arc crack lying along the interface of a unit disk as shown in
Fig. 2. The applied loads at infinity consist of uniform tension, p, directed at an angle w
and uniform heat flux, ¢, directed at an angle y with respect to the x-axis. For an insulated
crack, the temperature functions are given by (Chao and Shen, 1993b)

1 k J7=2 1
g’l(z)=Eliwlz—lvzfz+k—2<w31/zz—2cosez+ LA Zcoso” )] @7)

1

1 2t —2cosfz+1
g/z(Z)=§|:W12—%+<W3\/22~200892+ /2 ZCOS s )] (48)

where
2k,
w, = ——T,
1 kl+k2 0
P
w
y ////
5
b
* -
L S A x
a

9

7
A

/

Fig. 2. Single circular-arc crack under uniform tension and heat fiux.
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w2 = kTi]Z Lo
W= kl2 sz To,
We = kj—zrl:zr

= - q";:y :

Accordingly, the constants R, in eqn (25) and R, in eqn (26) become:

_ Kk
1 ll2+ll1’<2ﬁ2( 21— Wy), (49)
Rz=u—l“:_l—:%;[ﬂz(wl+ws) B ( W3+W1>:| (50)

Since the ends of the crack, L, are located at a = exp (—if) and b = exp (i0) on |z| = 1,
the Plemelj function in eqn (33) yields:

X(2) = (z—e®)~V2-iB(z —g=®)~ V2438 (51)

For the traction free condition, p* (t) = p~(¢) = 0, the line integrals that appeared in
eqns (39) and (40) can be evaluated by residual theory and the results are :

Wi /22 —2cosfz+1

k;
j- (t) A(ﬁlkl“ﬂz>[
2ni

Lt—z 2
2-—
—wy(z—cos0) —w, Y 22080” —ﬂ+ ] (52)
k
a(p.2-r.)
X f ORI {w [m
X*(t)(t—z) 1+a 3

2
1
_ <22 2(cosf—BsinB)z+ 2 2+

[./22—2c0502+1 ( 1
— Wy +

- 2X(0) —z+2(cosO—ﬁsin0))X(z)]}, (53)

(1 ——cosZO))X(z)]

where

_ 2p,4, a=l‘1+#2"1
Ha+ Ky’ Pat Ky
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Expanding eqn (51) near z = 0 renders:
Xiz) = —e¥®[1+Mz+M,z2*+ -],

where

3cos260+1

M, =cosf+28sinf, M, = )

+B*(1 —cos ) +2f sin 26.

The constants D, and D, can be obtained in a straightforward manner from eqn (44).
The results are :

=e_259#1(1+'€2)b-

D, PRI (54)
D, =¢ % [%(51—M150)+R,] (59)
where :
by = —ge‘Z‘“’,
b, = —Kk,a,—H = —«,F,

k in’0
H=u,p, [~w2+ k—2<w3inz—+w4cos()>].
1

Note that the unknown constant F is equivalent to the resultant force exerted on L
due to the thermal load which will be determined later. Expanding eqn (51) for large |z| :

x@ =+ M
(Z_z 2 23

where
N, =cos@—2fsin0, N, =4}+B>+(3 —B*) cos20—28sin26.
The constant ¢, (n = 1) which appeared in eqn (43) becomes :
¢, =R,. (56)

Furthermore, as |z| - o0

mz(z)—>§+f:#+o<l>. (57)

ZZ

Putting eqn (37) into eqn (57) and using the property with the knowledge that for large
2] :
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1 [ g0 <1> X(2) 1) (1)
— | == — dt-0O|—>
27rij;~ t—zdt—)o z)” 2mi JL XY ()(t—2) BV

yields the following equations :

_ () +pa+par ) F— [ (1 +5,5) + pa(1+ K1) Hix

Ri+co+Nic, = , 58
3+co+Nic PR (58)
(p2+p1Kk2)eo (41 +pak1)(c; + N Ry) _bp (59)
mi(+r) +p(1+x) i (T4+x)+pa(1+x,) 47
where
k,
A(—ﬂl—ﬁz>
k 1—cos 26
R, = Watmr) [ €08 w3—w4(1—cos0)]+N2R2. (60)
Hi+ oKy 2 4

Now, the supplementary condition equivalent to eqns (13), (15) and (16) gives:
®,(0) = Q,(0). (61)

Inserting eqns (35) and (36) into eqn (61) yields the following equation:

1 _
—_ﬂl( +K2)€_’ —Czﬁoc_o] ~iul(l +K2)[“M1K2F

0z + p1x¢2) [ﬂz(1+K|) 0

M:l eo (62)

— 2 = —
+ (M2~ MD)bol+ Ry = () + pt2x1)c, (#2+#1K2)|:u2(1+xl)

where :

Ry = (2+ k)M R + {Ws [_1+ezﬂo(2ﬂ2+l)

(1 —cos 9)]
2

k, )
A P | S
pi(1+x,) <klﬁ &
pa(1+x,y) 2

+2e%%w,(cos §— Bsin 0)} + (U4 py5c2)

x(1—cos@)y(w,—w;)+ M, R,. (63)

Now, we have three equations, (58), (59) and (62), for solving four unknowns e,, c,,
¢, and F. The remaining equation can be found from the condition that displacement must
be single-valued. Applying eqn (46), we have:

(T4 (uz + k) (1 + oK)
pr(t+e) +pu(14x4)

(2co+2N,c;+2e* D, +2M, e D,) = T, +R;. (64)

where :



3052 C. K. CHAOo and M. H. SHEN

T, =2up, (&ﬂz"‘ﬂ:%) [(l—cose)wﬁt—gl;(?&e)ws], (65)

_ (2 pr) (i + k) k, Ki{pa+pk,y) 1
Rs = (4w +m (45 {A (kl d "ﬁ2>(2(m Tho) 5>

1—cos 26
[2(1 —cosO)w,— Afzos—m] —2(1 +K1)M2R2}. (66)

After some algebraic manipulations, the final explicit forms are obtained as:

_ (T +r2) +po(T+ )T, + Rs+ (1 +15) (o + py ) H k)
20+ U+ ) [+ p) (g + o+ pak ) — ko () + paxy)]

+ (145 (1 +pax )y + p16) 2R, —2R))
2(1+ )1+ w2 + pir o) (0 + o+ por 1) — ko (B + paxy)]

(67)

_ pr(1+x,)
= Nipa (U415 (2 + pak2) € + (uy + pox ) [ (1+x) +20,(1+x,)]

wi(l+x,)
pa(1+xy)

—2N,(u, +#2K1)-@[R2]}+ R[R4]+e™ (1 + pr k)RR

€

x {ﬂl(l + 1) (M} — M) R[b,] + {g[ﬂl(l +x2)+u(1+x))]

e (a4 pK2) (1 + o+ 2K y)
(1 + paicy)

+(1+xk,) [M.uucz— ]@[ﬂ

i (1+x) +p(1+xy)
12 (i + paky)

i
(1 + pok )+ N (o + py k) e

Q?[H]} +

x {#1(1+K2)(M12—M2)-7[b0]+<7[R4]—ewo(ﬂz +u1%2) T [R3]— (1 +k;)

e (ua + pik2) () + pa + pak )
(11 +paky)

(I +x) +u(1+xy)
Ko(p + oK)

TH] }
(68)

X[Mlﬂle— ilg—[F]_

(L) (g + pp+ pax JF— [ (1 +K5) +p,(1 + 1) Hfx, _
Byt oK

Co = —N1C|+ R3 (69)

p #1(1+’€2)+ﬂ2(1+x1):| [ L
ey =~ — ¢,+NiR,), 70
’ 4|: lu2+,ulK2 H2+#1K2( ! ! 2) ( )

where # and J denote the real and imaginary part of the complex functions, respectively.

Up to now, all the coefficients that appeared in eqns (31) and (32) have been determined.
From eqn (51), it can be found that the stresses and displacements oscillate violently as the
crack tip is approached and this indicates that the upper and lower faces of the crack will
overlap one another. However, this unrealistic aspect of the solution is confined to very
small regions near the crack ends. Based on this finding, we would not further discuss the
fully open crack assumption near the crack tips. Although the overlap of the displacements
near the crack tips may be permissible from the mathematical formulation of the problem,
it is still required that the radial component of relative displacements of the two faces of
the crack must be greater than zero. The derivative of the relative radial displacement of
the two faces of the crack can be expressed as:
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u (1) = R{[w () + ' (1))/t}, (7

where

1
w(t)+w'(t) = ;:;[sz)i(t)—m (1) +2u2P29; (1)) - E[K'QT (N —=Q7 (O)+2u: 8,191 (1)]

- (1 + s ) (1 )2+ p k) [F7 (1) = FT ()]
(L) [ (1+x,) + (1 +x4)]

(2 + i) (i, — DIF3 (1) — F3 (1))

72
PP RS TR (T E e R
The condition of the fully open crack displacement is stated as:
t
j_m u(t)ydt’ 20 fortel. (73)

Now, the above results satisfying eqn (73) constitute a closed form solution to the
given problem which validates the assumption of the fully open crack. When the crack
surfaces come into contact with one another over a certain length, a much more complicated
boundary value problem than the present one must be considered. We do not further enter
into the subject in this paper.

According to the concept of fracture mechanics, K, and K, may be considered as the
stress intensity factors that cause unstable crack extension upon reaching some critical
values. In the usual manner, they can be obtained as:

K, —iK, =2./2nef" zllgl, (z—z)) VD, (2). (74)

In order to treat the problem by making use of eqn (74), the coordinate must be rotated
such that the crack tip is parallel to the x-axis. The convenient transformation for this
purpose is:

z=ie®(z—i—sinfcosh), (75)

at point b. Substituting eqns (75) and (35) into eqn (74), the stress intensity factors at point
b are:

_2/mexp [ﬂ(0+n)+i(g - g- +Blog (2sin0)>]

(1 +¢x)\/sin0
a(si2-s.)

1+a

K| —le =

14282

[—w; (ez“’ —2(cos 8 — fBsin @) e? + — (1—cos 20)>

+w4(e‘2’""""+e‘”—2(cos0—/3sin0)):'+co+c,e’”+c2e2""+D.e“”+Dze‘2i" . (76)

It is seen that the stress intensity factors are dependent on the angle of heat flow and
heat conductivity as well as elastic and thermal constants. In the special case for isothermal
elasticity, eqn (76) reduces to the results given by Perlman and Sih (1967a).
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Table 1. Typical properties of materials for composites

Properties Inclusion Matrix

Boron Carbon Glass Epoxy

Shear modulus, GN m 2 172.5 138.7 31.74 1.24
Poisson’s ratio 0.2 0.2 0.2 04
Thermal expansion coefficient, 106 °C~! 5.0 2.7 5.0 57.6
Heat conductivity, W (m °C)~' 18.2 15.6 1.94 0.45

6. NUMERICAL EXAMPLES AND DISCUSSION

In the following work, three typical examples of composite materials are given to
illustrate interface tractions along the bonded region as well as the stress intensity factors.
Let the material of the surrounding matrix be epoxy and the inclusion be glass, carbon or
boron, respectively. All the thermoelastic properties of composite materials are listed in
Table 1.

Applying eqn (73), the critical values of the crack angle ¢ for which the crack faces
come into contact at a certain point can be determined for different combinations of
materials and the angle of heat flux under plane strain conditions. The results are plotted

90
80 4#—#—#—% Boron/Epoxy
4—a—s—a Carbon/Epoxy
70 -e-6—6-o- Glass/Epoxy
60
~—~
o
0 50
&
&40
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(=)
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[=3

-
[=]

[=]

0 10 20 30 40 50
y(degree)

Fig. 3. Variation of the critical value of # with y, for which the crack faces come into contact at a
certain point.
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=400 3T T T
30 80 130 180 230 280 330
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Fig. 4. The nondimensional radial stress o, in bond, § = 30°, y = 0°.
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Fig. 5. The nondimensional shear stress 1,4 in bond, 6 = 30°, y = 0°.

in Fig. 3 which reveals that the solutions derived above are valid only for those values of 8
and y in the region enclosed by each curve and the y-axis. It is shown that, when the angle
of heat flux y = 0°, the critical value of the crack angle 0 is equal to 78° for glass/epoxy
composite while § = 49° and 31° for carbon/epoxy and boron/epoxy composites, respec-
tively. As the angle of heat flux shifts from 0° to 50° or above, the relative radial displacement
u, takes a negative value on a certain part of the boundary for any value of the crack angle
and this implies that there is an overlap of opposite faces of the crack. Figures 4 and 5
indicate the nondimensional tractions along the bonded portion for different composite
materials with the crack angle 6 = 30° under remote heat flux approached from the negative
x-axis. The results show that the magnitude of interface tractions increases with the rigidity
of the inclusion. Namely, interface tractions on the bonded region will be enhanced when
the fiber is made more rigid than the matrix. It should be noted that the positively singular
traction o, always prevails for each composite material which validates the assumption of
fully open crack. As the definition from eqn (74), the stress intensity factors are introduced
to measure the local energy intensification in the vicinity of the crack tip. Both the non-
dimensional stress intensity factors K, and K, vs the crack angle # are plotted in Figs 6 and
7, respectively for the angle of heat flux y = 0°. Due to symmetric property, only one of the
crack tips needs to display the factors K, and K. It is found that both K, and X, increase
with the rigidity of the fiber for the given crack dimension and load angle. It is interesting
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400 4—a—a—4 Carbon/Epoxy
e—o-o-6 Glass/Epoxy

300

Kyks /ps00qor™®
N
[=]
[=]

100

40
6(degree)
Fig. 6. Variation of the nondimensional stress intensity factor K, with the crack angle for y = 0°.
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Fig. 7. Variation of the nondimensional stress intensity factor K, with crack angle for y = 0°.

to note that the stress intensity factors would not monotonically increase with the crack
angle 0. Referring to Fig. 6, the factor X, for boron/epoxy composite begins to increase
with the crack angle 0 and attains its maximum value around 6 = 24° and then decreases
as the crack angle further increases up to 6 = 31°. From a failure analysis point of view,
system instability for boron/epoxy composite under remote heat flux (y = 0°) would be
likely to take place as the interface crack extends along the curved bond up to 24° where
the resulting stress intensity factor is largest. As the crack extends much further and
beyond 32° a negatively singular traction may prevail and crack arrest might occur. Similar
observations can also be applied for carbon/epoxy and glass/epoxy composites except the
crack angle beyond 49° and 78° for carbon/epoxy and glass/epoxy composites, respectively,
where the initial assumption of the fully open crack is no longer valid.

7. CONCLUSION

A general solution is obtained to the thermoelastic problem of curvilinear cracks in
bonded dissimilar materials. The analysis was based upon the Hilbert problem formulation
and a special technique of analytical continuation. In order to illustrate the use of the
present approach, detailed results are given for a single circular-arc crack lying along the
interface between dissimilar materials. Explicit forms of the stress functions in both the
inclusion and the surrounding matrix have been provided. Comparison with the solution
found for the special case shows that the solution presented here is exact and general. Three
typical examples of composite materials are given to illustrate interface tractions along the
bonded region as well as the stress intensity factors under remote heat flux. The condition
of the fully open crack is also addressed in this study which validates the above resulits.
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